MATH 0290 SEC 1050 Introduction to Differential Equations

HW \#5 Due Friday September $25^{\text {th }} 11: 59$ pm EST
updated 9/19/2020 at 6:30pm EST-fixed a typo in number 4.3 \#17 and 35
Questions from Polking, Boggess and Arnold, Differential Equations with Boundary Value Problems, second edition

Chapter 4.3 \#1, 9, 17, 35
Chapter 4.4 \# 1, 7
Chapter 4.3

1. $y^{\prime \prime}-y^{\prime}-2 y=0$ has real, characteristic roots. Find the general solution.
2. $y^{\prime \prime}+y=0$ has complex, characteristic roots. Find the general solution.
3. $y^{\prime \prime}-4 y^{\prime}+4 y=0$ has repeated, real, characteristic roots. Find the general solution.
4. Find the solution of the initial value problem $\quad y^{\prime \prime}+12 y^{\prime}+36 y=0, \quad y(1)=0$, $y(1)=-1$.

Chapter 4.4

1. (a) Use a computer or calculator to plot the graph of the function and (b) place the solution in the form of $y=\cos (\omega t-\phi)$ and compare the graph of your answer with the plot found in part (a)

$$
y=\cos 2 t+\sin 2 t
$$

7. Place the following equation in the form $y=\mathrm{A} e^{-c t} \cos (\omega t-\phi)$. Then, on the same plot, place the graphs of $y=A e^{-c t} \cos (\omega t-\phi), y=A e^{-c t}$, and $y=-A e^{-c t}$. For the last two, use a different line style and/or color than for the first one.

$$
y=e^{-\frac{t}{2}}(\cos 5 t+\sin 5 t)
$$

