# MATH 0290 SEC 1050 Introduction to Differential Equations 

HW \#3 Due Friday September 11 ${ }^{\text {th }} 11: 59$ pm
EST updated 9/7/2020 at 6pm EST-fixed a typo in number 2.4 \#15
Questions from Polking, Boggess and Arnold, Differential Equations with Boundary Value Problems, second edition

Chapter 2.2 \#3, 5, 9, 33
Chapter 2.3 \# 9
Chapter 2.4 \#5, 15, 19
Chapter 2.2
For exercises 3, 5 and 9 , find the general solution of the indicated differential equation. If possible, find an explicit solution.
3. $y^{\prime}=e^{x-y}$
5. $y^{\prime}=x y+y$
9. $x^{2} y^{\prime}=y \ln y-y^{\prime}$
33. A murder victim is discovered at midnight and the temperature of the body is recorded at $31^{\circ} \mathrm{C}$. One hour later, the temperature of the body is $29^{\circ} \mathrm{C}$. Assume that the surrounding air temperature remains constant at $21^{\circ} \mathrm{C}$. Use Newton's law of cooling to calculate the victim's time of death. Note: the temperature of a living human being is approximately $37^{\circ} \mathrm{C}$.

Chapter 2.3
9. A ball having mass $m=0.1 \mathrm{~kg}$ falls from rest under the influence of gravity in a medium that provides a resistance that is proportional to its velocity. For a velocity of $0.2 \mathrm{~m} / \mathrm{s}$, the force due to the resistance of the medium is -1 N . [One Newton $[\mathrm{N}]$ is the force required to accelerate a 1 kg mass at a rate of $1 \mathrm{~m} / \mathrm{s}^{2}$. Hence, $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$.] Find the terminal velocity of the ball.

Chapter 2.4
5. Find the general solution of the first-order, linear equation. $x^{\prime}-2 x /(t+1)=(t+1)^{2}$
15. Find the solution of the initial value problem. $\left(x^{2}+1\right) y^{\prime}+3 x y=6 x, \quad y(0)=-1$
19. Find the solution of the initial value problem. Discuss the interval of existence and provide a sketch of your solution $(2 x+3) y^{\prime}=y+(2 x+3)^{1 / 2}, \quad y(-1)=0$

